Relazione del programma di statistica: Curva di Gauss.

Vincoli imposti dal problema :

Calcolare l'area di probabilità compresa tra due intervalli(z', z''), sottostante la curva normale standardizzata detta curva di Gauss.

Visualizzare il risultato con un grafico che evidenzi l'area di probabilità.

Specifiche integrate : $\int_{z'} \frac{1}{\sqrt{2\pi}} e^{-\frac{z'}{2}} dz$ non è possibile applicare il normale procedimento, perché il risultato non è esprimibile tramite funzioni elementari; inoltre non è neppure possibile calcolare il valore esatto dell'integrale definito nell'intervallo[z', z'']. Si può affrontare il problema dal punto di vista numerico utilizzando il seguente sviluppo di serie di potenze: $z = 1 - \frac{z^2}{2} - 1 - \frac{z^2}{2} - 1 - \frac{z^{2n+1}}{2}$

$$G(z) = \int_{0}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{z}{2}} dz = \frac{1}{\sqrt{2\pi}} \cdot \sum_{n=0}^{+\infty} \left(-\frac{1}{2}\right)^{n} \frac{z^{2n+1}}{(2n+1) \cdot n!}$$

Questa serie permette il calcolo dell'integrale definito nell'intervallo[0, z], per calcolarlo tra z' e z'' bisogna sottrarli entrambi: G(z'')-G(z').

Il valore esatto dell'integrale si avrebbe sommando infiniti termini, per avere un'approssimazione di almeno 10 cifre ho usato una settantina di somme.

Struttura dati:

Nome		0	L	v/c	Descrizione	Тіро
Double			<	С	Numero di Neplero(e=2.71828182845905)	Double
¶			<	С	Pigreco ¶=3.14159265358979	Double
z1	<			V	Intervallo inferiore	Single
z2	<			V	Intervallo superiore	Single
Z		<		V	Area della probabilità	Double
min, Max		<	<	V	Limiti del disegno	Single
m			>	V	Margine del disegno	Single

Queste variabili sono dichiarate nella sezione generale del form1.

Legenda I = input, O = output, L = lavoro, v/c = variabile o costante

- Procedure :
 - 1• **CalcolaArea:** Calcola l'area di probabilità con il calcolo della serie di somme, alla variabile globale Z viene prima sommata, con un ciclo For, la serie che rappresenta l'intervallo[0, z''], poi viene sottratta la serie che rappresenta l'intervallo[0, z'']. In fine Z assume il valore dell'integrale definito nell'intervallo[z', z''] moltiplicandola per $\frac{1}{\sqrt{2\pi}}$ La variabile viene arrotondata a 10 cifre e visualizzata sul Form.
 - 2• **DisegnaArea:** Disegna l'area che rappresenta la probabilità compresa tra i due intervalli[z', z''], con l'uso di linee verticali disegnate con uno step adeguato.
 - 3• DisegnaGauss: Disegna la curva di Gauss, gli assi e la loro numerazione; con l'utilizzo dei margini che sono ricavati dal massimo e dal minimo.(m = (Max min) / 10)
 - 4• fattoriale: Function che calcola il fattoriale, del numero Integer passato alla funzione, e ne restituisce uno Double.
 - **5 y:** Function che contiene la funzione di Gauss, il valore Double passato alla funzione rappresenta la variabile indipendente x che nella funzione di Gauss è indicata con la lettera z.

Restituisce un valore Double che contiene la coordinata y nel punto d'ascissa x.

Relazione di statistica

Spiegazione del funzionamento del programma :

Il programma ha un utilizzo estremamente semplice, all'apertura viene disegnata la curva di Gauss. All'utente è richiesto solo l'inserimento degli intervalli, di cui si vuol calcolare l'area di probabilità. I valori vanno inseriti nelle apposite Text, durante la digitazione viene evidenziata nel disegno l'area compresa tra gli intervalli, e il valore numerico della probabilità.

L'utente ha a disposizione dal Menù due opzioni:

- 1. Ricomincia: Azzera le variabili e riporta il Form nelle condizioni iniziali.
- **2• Esci:** Chiude l'applicazione e torna a Windows.

Codice:

```
Const e As Double = 2.71828182845905 'Neplero
Const ¶ As Double = 3.14159265358979 'Pigreco
Dim z1 As Single 'Intervallo inferiore
Dim z2 As Single 'Intervallo superiore
Dim Z As Double 'Area della probabilità
Dim min, Max As Single 'Limiti del disegno
Dim m As Single 'Margine del disegno
```

```
Private Sub Form_Load()
min = -5
Max = 5
z1 = 0
z2 = 0
Z = 0
Text1.Text = ""
Text2.Text = ""
Text3.Text = ""
Picture1.Cls
Call DisegnaGauss
End Sub
```

```
Private Sub Mnul_Click(Index As Integer)
Select Case Index
Case 0
    Form_Load
Case 1
    End
End Select
End Sub
```

```
Private Sub Text1_Change()
If Not IsNumeric(Text1.Text) And Text1.Text <> "" And Text1.Text <> "-" Then
    MsgBox "È possibile inserire solo numeri reali.", vbCritical, "Error!!!"
    Text1.Text = ""
    Text1.SetFocus
Else
    If IsNumeric(Text2.Text) Or Text2.Text = "" Then
        z1 = Val(Text1.Text)
        Call DisegnaArea
    End If
End If
End Sub
```

Private Sub Text2_Change()
If Not IsNumeric(Text2.Text) And Text2.Text <> "" And Text2.Text <> "-" Then

Relazione di statistica

```
MsgBox "È possibile inserire solo numeri reali.", vbCritical, "Error!!!"
    Text2.Text = ""
    Text2.SetFocus
Else
    If IsNumeric(Text1.Text) Or Text1.Text = "" Then
        z2 = Val(Text2.Text)
        Call DisegnaArea
    End If
End If
End Sub
Public Sub DisegnaArea()
Dim i As Double
Dim step As Single
min = -5
Max = 5
Z = 0
If min > z1 Then
    min = z1
    Picture1.Cls
    Call DisegnaGauss
ElseIf Max < z2 Then
    Max = z2
    Picture1.Cls
    Call DisegnaGauss
Else
    Picture1.Cls
    Call DisegnaGauss
End If
'Area soto la curva di Gauss
If Sgn(z2 - z1) > 0 Then
    step = 0.01
Else
    step = -0.01
End If
For i = z1 To z2 Step step
    Picture1.Line (i, 0)-(i, y(i)), RGB(0, 192, 255)
Next i
Picture1.Line (z1, -0.03)-(z1, y(CDbl(z1))), RGB(0, 0, 255)
Picture1.CurrentX = z1 - Picture1.TextWidth("z'") / 2
Picture1.CurrentY = -0.03
Picture1.Print "z'"
Picture1.Line (z2, -0.03)-(z2, y(CDbl(z2))), RGB(0, 0, 255)
Picture1.CurrentX = z2 - Picture1.TextWidth("z''") / 2
Picture1.CurrentY = -0.03
Picture1.Print "z''"
Call DisegnaGauss
Call CalcolaArea
End Sub
```

```
Public Sub DisegnaGauss()
Dim i As Double
m = (Max - min) / 10
Picture1.Scale (min - m, 0.5) - (Max + m, -0.05)
'Asse X(z)
Picture1.Line (min - m, 0) - (Max + m, 0), RGB(0, 255, 0)
Picture1.CurrentX = Max
Picture1.CurrentY = 0.02
Picture1.Print "z"
'Asse Y(Z)
Picture1.Line (0, 0.5) - (0, -0.05), RGB(0, 255, 0)
```

```
Marco Cibelli
```

```
Picture1.CurrentX = 0 + m / 4
Picture1.CurrentY = 0.49
Picture1.Print "Z"
'Curva di Gauss
For i = min - m To Max + m Step 0.01
    Picture1.Line (i, y(i))-(i + 0.01, y(i + 0.01)), RGB(0, 0, 255)
Next i
'Numerazione
For i = 0.1 To 0.5 Step 0.1
    Picture1.Line (0 - m / 4, i)-(m / 4, i), RGB(0, 255, 0)
    Picture1.CurrentX = -m
    Picture1.CurrentY = i + 0.01
   Picture1.Print CStr(i)
Next i
For i = CInt(min) To -1
    Picture1.Line (i, -0.005)-(i, 0.005), RGB(0, 255, 0)
    Picture1.CurrentX = i - Picture1.TextWidth(CStr(i)) / 2
    Picture1.CurrentY = -0.01
   Picture1.Print CStr(i)
Next i
For i = 1 To CInt(Max)
    Picture1.Line (i, -0.005)-(i, 0.005), RGB(0, 255, 0)
    Picture1.CurrentX = i - Picture1.TextWidth(CStr(i)) / 2
    Picture1.CurrentY = -0.01
   Picture1.Print CStr(i)
Next i
End Sub
```

```
Public Function y(x \text{ As Double}) As Double

y = (1 / \text{Sqr}(2 * \mathbb{T})) * e^{(-(x^2)/2)}

End Function
```

```
Public Sub CalcolaArea()
Dim n As Integer
Z = 0
For n = 0 To (2 * z2) + 75
        Z = Z + ((-0.5) ^ n) * ((z2 ^ (2 * n + 1)) / ((2 * n + 1) * fattoriale(n)))
Next n
For n = 0 To (2 * z1) + 75
        Z = Z - ((-0.5) ^ n) * ((z1 ^ (2 * n + 1)) / ((2 * n + 1) * fattoriale(n)))
Next n
Z = Z * (1 / Sqr(2 * ¶))
Text3.Text = CStr(Round(Z, 10))
End Sub
```

```
Public Function fattoriale(x As Integer) As Double
Dim i As Integer
fattoriale = 1
For i = 1 To x
    fattoriale = fattoriale * i
Next i
End Function
```

Interfaccia:

Ecco alcuni esempi di possibili esercizi svolti dal programma:

Relazione di statistica

Firma_____